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Goals of This Talk
In this talk, we look at various basic topics, keeping in mind the
background of anabelian, in particular mono-anabelian
geometry. Even seemingly unrelated topics are all connected by
the background of anabelian geometry.

It is difficult to formulate rigorously what is meant by

reconstructable in a mono-anabelian fashion

or

reconstructable in a purely group theoretic fashion

et c. (cf. species, mutations, [IUTeichIV]), but by looking
through various concrete examples, it would be clear that such
reconstructions do exist!

Since there is little point in going over the proofs of a relatively
niche topic in detail, I will focus on

showing the key points of the strategy

with regard to the proofs.
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Research Background

As an undergraduate student, I once lost all faith in mathematical
symbol manipulation.

What is difference?

What differences are reasonable to accept or recognize?

I asked myself.

I wanted interpretations to be intrinsically derived from the real.
I did not want interpretations to depend on how I perceive them. I
wanted to interpret it without reference to anything but the most
certain and pure “itself”.
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Is Set Theoretic Reconstruction Enough?

Assume that we are given a polynomial ring R[X1, · · · , Xn] with
coefficient ring R. Can we then reconstruct purely
ring-theoretically the objects R and n for example?

Can we say that R is the coefficient ring of R[X1, · · · , Xn] simply
because we see the symbol “R”, or that the number of
indeterminates is n simply because we see the symbol “n”?

=⇒For example, if we define the notion of a map as a triple
(X,Y,Γ ⊆ X × Y ), its domain and codomain can always be
reconstructed from the map itself. Then, if we define
R[X1, · · · , Xn] to be a *-tuple of a set of maps Nn → R and
such-and-such, both R and n can always be reconstructed from
the set R[X1, · · · , Xn].
=⇒Is this enough? Maybe NO.
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Reference Models

For a general ring S, let us consider a suitable definition of the
abstract notion “S is a polynomial ring”: a ring S is a
polynomial ring if there exists a ring R, n ∈ N and a ring
isomorphism(i.e., reference isomorphism) such that
S ≃ R[X1, · · · , Xn].

=⇒Here, are R and n unique?
=⇒NO. For example, let S to be the zero ring. Then, we have
infinitely many possible choices for n. That is to say, the choice of
a “model” R[X1, · · · , Xn] of S is not intrinsic.

=⇒Once we fix one model, we can reconstruct R and n from the
set-theoretic object R[X1, · · · , Xn] itself by the previous argument,
but we want to reconstruct R and n solely from S in a purely
ring-theoretic way, without using, and independent of, such a
particular model choice.
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of FC Type Rings

We shall say a ring R is of FC type if there exists a model
polynomial ring for R over some field, i.e., there exists k, n ∈ N
and an isomorphism such that k[X1, · · · , Xn] ≃ R

Proposition

Let R be a ring of FC type. Then, we may reconstruct “k” and
“n” solely from R in a purely ring-theoretical manner.

Proof.
For given ring of FC type R, let k× := R×, k := {0} ∪ k× and
regard k as a ring by using the induced ring structure from R. Also
let n := dim(R) then, there exists a natural ring isomorphism
R ≃ k[X1, · · · , Xn], up to Sn, and we win.

In what follows, we will examine this proof a little more closely.
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Krull Dimension

Definition (Krull dimension)

Let R be a ring. Then, we define dim(R) to be the supremum of
the set of natural numbers n ∈ N such that there exists an
ascending chain of length n in R.

Remark
The notion of Krull dimension is ring-theoretic. In particular, the
existence of a ring isomorphism R ≃ S implies dim(R) = dim(S).

Lemma
Let k be a field. Then, dim(k[X1, · · · , Xn]) = n.

First, observe that from the existence of an ascending chain,

0 ⊊ (X1) ⊊ (X1, X2) ⊊ · · · ⊊ (X1, · · · , Xn)

the inequality n ≤ dim(k[X1, · · · , Xn]) is shown easily. The
converse inequality is non-trivial.
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How to Calculate Krull Dimensions

There are various proof strategies. For example, using facts listed
below, we can inductively show that dim(k[X1, · · · , Xn]) = n:

1. For a Noetherian ring R, R[X]is also Noetherian and
dim(R[X]) = dim(R) + 1 holds.

2. A field k is Noetherian and dim(k) = 0.
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How to Calculate Krull Dimensions

We also have a more direct way to show the equality. Letting
R := k[X1, · · · , Xn], R := k[X1, · · · , Xn], we can show properties
listed below:

1. The natural map Specm(R)→ Specm(R) is bijective.

2. For any m ∈ Specm(R), let m be the image of m then,
dim(Rm) = dim(Rm).

3. For m := (X1, · · · , Xn) ∈ Specm(R), dim(Rm) = n.

4. For any m, n ∈ Specm(R), there exists a natural isomorphism
Rm ≃ Rn. In particular, dim(Rm) = dim(Rn).

1, 2 follow from well-known arguments around the theory of
integral extensions, going-up, going-down. 4 is essentially
Hilbert’s Nullstellensatz. 3 follows from well-known arguments
around the proof of dimension theorem.
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Image of an Algorithm

We would like to consider reconstruction algorithms themselves
as mathematical objects (cf. species, mutations), but for the time
being we will consider them in terms of categories, i.e.,
“categorified” objects.

Definition
Let R the full subcategory of Rng whose objects are rings R such
that dim(R) <∞ and the ring structure on R can “descend” to
R× ∪ {0} ⊆ R.
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Image of an Algorithm

In this case, the algorithm we have just seen determines a functor
R→ Fld× N and together with the functor induced by the
algorithm “to construct a polynomial ring”,

Φ : R→ Fld× N→ R.

Now it is obvious that Φ ◦Φ ≃ Φ. As Fld×N→ R→ Fld×N is
isomorphic to the identity functor, by the standard argument of
split idempotent morphisms, one can reconstruct Fld× N from
Φ up to category equivalence in a purely category theoretic
manner.

Question
What is the relation between R and Φ(R)?
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of Finite Primarily Intersection

The interpretation introduced above may be applied to the theory
of primary ideal decomposition.

Fix a Dedekind ring R. First, define a primary ideal
decomposition of I to be a finite set of primary ideals {qλ} of R
such that ∩λqλ = I. Next, we shall say I is decomposable if I
has a primary ideal decomposition.

At this point, we observe the following analogies:

abstract input object reconstructable objects

of FC type polynomial ring R k, n

decomposable ideal I {qλ}

In the latter case, the so-called uniqueness of the prime
factorization follows.
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Primary Ideal Decomposition

Firstly, let us review the theory of primary ideals. It is immediate
to see the followings are equivalent:

Lemma
Let R be a ring, q ⊊ R be a proper ideal of R. Then, the
followings are equivalent:

1. ∀x, y ∈ R, xy ∈ q =⇒ x ∈ q ∨ ∃n > 0, yn ∈ q.

2. Any zero divisor in R/q is nilpotent.

Any ideal q which satisfies the equivalent conditions above is called
primary. A primary ideal q which satisfies

√
q = p for some

p ∈ Spec(R), then q is also called p-primary.

14 / 114



Primary Ideal Decomposition
A primary ideal decomposition {qλ} of an ideal I of R is called
minimal if the followings hold:

1.
√
qλ are mutually distinct.

2. For all λ, ∩λ′ ̸=λqλ′ ̸⊆ qλ.

For arbitrary ideal I, the existence of decomposition of I is
equivalent to the existence of minimal decomposition of I. This
follows from the fact that p-primary ideals are stable under
intersection.

For an ideal I, let
Assoc(I) := {

√
(I : x) :

√
(I : x) ∈ Spec(R), x ∈ R}. It is

immediate to observe that the notion (I : x) and
√
I are

compatible with intersection and this immediately implies that if
{qλ}λ∈Λ is a minimal decomposition of I,

Assoc(I) = {
√
qλ}λ∈Λ,

i.e., “rad(I)” may be intrinsically defined.
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Reconstruction of Primary Components

A set Σ is (R, I)-isolated if the followings are satisfied:

1. Σ ⊆ Assoc(I).

2. ∀p′ ∈ Assoc(I),∀p ∈ Σ[p′ ⊆ p =⇒ p′ ∈ Σ].

For any (R, I)-isolated set Σ, one may associate corresponding
multiplicatively closed subset SΣ := R \ ∪p∈Σp.

Now we can see how to reconstruct minimal decomposition {qλ}
of a decomposable ideal I:

1. Let Σp := {p} for each p ∈ Minimal(Assoc(I)).

2. Then, Σp is (R, I)-isolated.

3. Taking the contraction of the extension of I along R→ S−1
Σp

R

for each p ∈ Minimal(Assoc(I)), one obtains a set which is
equal to Minimal({qλ}) = {qλ}.
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Problems

Raising some problems here:

The example we have just seen is to reconstruct the reference
model up to isomorphism for an object such that there exists a
reference isomorphism to the reference model.

=⇒ Can other objects which are constructed from the reference
model also be reconstructed? Also, if greater indeterminacies are
allowed, can more objects be reconstructed? In such a case, what
are the conditions for reducing indeterminacies?

We would like to consider the intrinsic conditions that leads to
these reconstructability.
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Group of MLF Type

Definition

1. We call a finite extension Qp → K an MLF. For an MLF K,
GK := Gal(K/K).

2. A group G is of MLF type if there exists an MLF K and an
isomorphism G ≃ GK .

Lemma

1. In general, topological groups that arises from MLF are
topologically finitely generated([NSW]).

2. As open subgroups of a profinite group which is topologically
finitely generated are the same as of finite index
subgroups([NS]), one may reconstruct a topological group G
from an abstract group G.

3. In topologically finitely generated profinite groups, abstract
commutator subgroups are closed([NS]), i.e., it is not
necessary to take the closure. 18 / 114



Mono-Anabelian Reconstructions via LCFT

First, let us look at the case K = Qp. Now, observe the following
properties:

1. Gab
p ≃ Gal(Qab

p /Qp).

2. By local class field theory, Gab
p ≃ Ẑ× Z×

p .

3. (Gab
p )tor ≃ (Z×

p )tor.

4. G
ab/tor
p := Gab

p /(Gab
p )tor ≃ Ẑ× Z×

p /(Z×
p )tor.

5. Z×
p /(Z×

p )tor ≃ Zp.

6. Ẑ ≃
∏

q∈Spec(Z) Zq.

Thus,
Gab/tor

p ≃
∏

q∈Spec(Z), q ̸=p

Zq × Z2
p

holds. Therefore, in the case ℓ = p, G
ab/tor
p /ℓGab/tor ≃ (Z/ℓZ)2,

and in the case ℓ ̸= p, G
ab/tor
p /ℓGab/tor ≃ Z/ℓZ.
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Mono-Anabelian Reconstructions via LCFT

If [K : Qp] > 1:

1. Gab
K ≃ Gal(Kab/K).

2. By local class field theory, Gab
K ≃ Ẑ×O×

K .

3. O×
K/(O×

K)tor ≃ log(1 +mK) ≃ OK ≃ Z[K:Qp]
p .

4. Gab/tor := Gab
K /(Gab

K )tor ≃ Ẑ× Z[K:Qp]
p .

Therefore, in the case ℓ = p, Gab/tor/ℓGab/tor ≃ (Z/ℓZ)[K:Qp]+1,
and in the case ℓ ̸= p, Gab/tor/ℓGab/tor ≃ Z/ℓZ.
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Mono-Anabelian Reconstructions via LCFT

We shall continue to consider reconstruction algorithms of other
objects:

1. d(G) := logp

( ∣∣Gab/tor/pGab/tor

∣∣ )− 1.

2. f(G) := logp

(
1 +

∣∣∣(Gab−tor)p
′
∣∣∣ ). Here (Gab−tor)p

′
is the

p-Sylow subgroup of Gab−tor.

3. e(G) := d(G)/f(g).

4. I(G) :=
∩

N . Here, N is an open normal subgroup of G such
that e(G) = e(G).

5. P (G) :=
∩

N . Here, N is an open normal subgroup of G
such that e(N)/e(G) > 0 and e(N)/e(G) is prime to p.

Then, once one fixes a reference model, these are isomorphic to
the well-known objects, i.e.,
dK := [K,Qp], fK := [OK/mK ,Fp], eK :=

∣∣K×/O×
K ·Q×

p

∣∣,
inertia/wild inertia subgroup.
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Mono-Anabelian Reconstructions via LCFT

Reconstruction continued:

1. Let Frob(G) ∈ G/I(G) to be the unique element such that
the conjugate action on I(G)/P (G) is the action determined
multiplying by pf(G).

2. k×(G) := Gab ×G/I(G) Frob(G)Z.

3. k
×
(G) := limH⊆G k×(H), Here H is an open subgroup.

4. µ(G) := k
×
(G)tor.

5. Λ(G) := limµ(G)[n].
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Neukirch-Uchida Theorem

From the previous analogy, one might think that it is possible to
recover k from an abstract group Gk. But this is wrong!([JR]) For
MLF of residual characteristic ̸= 2,

Isom(k1/k1, k2/k2)
non-isom.

↪→ Isom(Gk1 , Gk2).

In particular,

Aut(k/k)
non-isom.

↪→ Aut(Gk).

Remark
For NF(number fields),

Isom(F 1/F1, F 2/F2)
∼−→ Isom(GF1 , GF2).

This is the famous Neukirch-Uchida Theorem([NSW]).

23 / 114



A Version of Grothendieck Conjecture

For of MLF type groups, Neukirch-Uchida does not hold. But let’s
see if an analogy can somehow be drawn. First, in fact:

Lemma
For k1, k2 MLF,

Isom(k1, k2)→ Out(Gk1 , Gk2) := Isom(Gk1 , Gk2)/ Inn(Gk2)

is injective.

This follows immediately from local class field theory, but we dare
to show it from the slimness of groups of MLF type.

Definition
Let G be a topological group. Then, G is slim if for any open
subgroup H of G, ZH(G) := {g ∈ G : ∀h ∈ H,hg = gh} is trivial.
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A Version of Grothendieck Conjecture

Lemma
Of MLF type groups are slim.

Proof.
Let G ≃ GK , H be an open subgroup of G and γ ∈ ZG(H).
Then, it can be written as H ≃ Gal(K/L) for some finite Galois
extension K → L→ K. Now, by local class field theory, the
reciprocity map fits into the following commutative diagram:

L× L×

Gal(K/L)ab Gal(K/L)ab

∼
γ

In particular, by the fact γ ∈ ZG(H) and injectivity of the
reciprocity map, it follows that γ is “over L” and
γ ∈ Gal(K/L) ≃ GL. By letting L vary, it follows that γ is trivial.
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A Version of Grothendieck Conjecture

Now, injectivity of

Isom(k1, k2)→ Out(Gk1 , Gk2)

in evident by the following argument:

Proof.
Assuming that images of ϕ1, ϕ2 ∈ Isom(k1, k2) coincide, as ϕ1, ϕ2

are over Qp, it follows that ϕ1 ◦ ϕ−1
2 ∈ ZGQp

(Gk2) and we win.

However.
Isom(k1, k2)→ Out(Gk1 , Gk2)

is not surjective, we would like to consider whether the image of
this map can be characterized group-theoretically.
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A Version of Grothendieck Conjecture

In fact:

Theorem ([QpGro])

For an outer isomorphism α : Gk1
∼−→ Gk2 , TFAE:

1. α is scheme-theoretic, i.e., it is contained in the image of
Isom(k1, k2)→ Out(Gk1 , Gk2).

2. α is compatible with the ramification filtrations.

3. α preserves Hodge-Tate representations.

First, let us discuss Hodge-Tate-ness.
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Hodge-Tate Representations

Consider for the model object. Let K be an MFL, V be a finite
Qp-vector space, and GK ↷ V be a continuous action. Then, let

dV (i) := dimQp(V (−i)⊗Qp K
∧
)GK .

Here, V (i) := V ⊗Zp Zp(i) is the Tate-twist.

Lemma
dV :=

∑
dV (i) ≤ dimQp(V ).

In light of this:

Definition
We shall say V is Hodge-Tate if dV = dimQp(V ) holds.
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Reconstruction of Hodge-Tate Representations

This notion is in fact not strictly scheme-theoretic but
group-theoretic, i.e., for an of MLF type group G with the
ramification filtration,

▶ GK ↷ V (i).

▶ GK ↷ K
∧
.

can be reconstructed group theoretically.

The former reconstruction is immediate as we have already seen
that Λ(G) ≃ limµK [n] can be reconstructed from G. To

reconstruct K
∧
from G, as we have

K
∧ ≃ (OK ⊗Zp Qp)

∧

it is sufficient to reconstruct GK ↷ OK (N.B., p can be
reconstructed from G). For this reconstruction, we use the
ramification filtration {Gv

K}v≥0.
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Reconstruction of Hodge-Tate Representations

Reconstruction of K: first, for an of MLF type G, let

U(G) := im(I(G) ↪→ G ↠ Gab)

then this reconstructs UK = O×
K . By considering Verlagerung

maps as transition morphisms, limH:open U(H)⊗Zp Qp is via
p-adic logarithmic isomorphic to the additive module K.

Reconstruction of OK : for an open subgroup H ⊆ G and v, r
which satisfies v = r · e(H), 2 ≤ r, as

log : p−r · im(Hv ↪→ G ↠ Gab) = p−r · Uv(G)
∼−→ OL,

taking lim one reconstructs OK .
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Reconstruction of Hodge-Tate Representations

Thus, we find that Hodge-Tate-ness can be recovered from G.
Finally, we observe that α : Gk1

∼−→ Gk2 which is compatible with
the ramification filtration is scheme theoretic.

The point of the proof is to show the existence of embeddings
ι1 : k1 → E and ι2 : k2 → E such that

im(ι1) = im(ι2)

(N.B., this is a strict equality!). That is “to realise k1, k2 as set
theoretically equal subfields of some field E.”
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Uniformizing Representations

Definition
Let K be an MLF, E be Qp → K → E which is finite Galois over
Qp, V be a finite Qp-vector space which is equipped with a
continuous action GK ↷ V, E ↷ V and satisfies dimE(V ) = 1.
Then, V is uniformizing if there exists an open subgroup I ⊆ UK

such that the restriction of ρK : GK → E× to I is equal to the
restriction of some field morphism K → E to I.

In fact, uniformizing-ness is group theoretic.

Lemma
TFAE:

1. V is uniformizing.

2. dV (1) = [E : K] = dimQp(E)/[K : Qp] and
dV (0) = [E : K]([K : Qp]− 1) hold.

N.B., [K : Qp] can be reconstructed from G.

32 / 114



A Version of Grothendieck Conjecture — Main Theorem

Let us show the main theorem. Let α : Gk1
∼−→ Gk2 be an outer

isomorphism which is compatible with the ramification filtrations.

Take an uniformizing V over k1. Hence, there exists I1 ⊆ Uk1 and
ι1 : k1 → E. V is also uniformizing over k2, so as we have
I2 ⊆ Uk2 and ι2 : k2 → E, and as for any open subgroups I ⊆ UK

generates K as a Qp-vector space, by calculating commutative
diagrams (i.e., as the image of I1 → Gk1 → E and I2 → Gk2 → E
coincide) we obtain

im(ι1) = im(ι2)

and we win.
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Hyperbolic Curves of Strictly Belyi Type

Can one reconstruct K in a mono-anabelian fashion from G?

Definition
A hyperbolic curve X over an MLF K is of strictly Belyi type if
X is defined over a number field and is isogenous to a hyperbolic
curve of genus zero.

Then,

Theorem ([AbsTopIII])

One can reconstruct the quotient and the action

Π ↠ G ↷ K

in a purely group-theoretic fashion from the étale fundamental
group Π of X.
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Witt Rings

As we saw earlier, p-adic Hodge theory is a fundamental tool of
anabelian geometry. Interestingly, however, the so-called
Grothendieck conjecture does not hold for Fargues-Fontaine
curves! We will now see what the point is. For this purpose, we
will review basic objets such as Witt vector rings and perfect rings.

We always have a natural operation on arbitrary rings: R 7→ R/pR.
For example, when R = Zp, this is the same as considering

Zp 7→ Zp/pZp ≃ Fp.

This direction is easy and trivial, then how about the converse
direction? Do we have always canonical converse direction?
Restricting on perfect Fp-algebras, we always have the converse
and it is given by the Witt vector ring functor.

35 / 114



Construction of Witt Rings

Let S be a truncation set, i.e., S ⊆ N+ such that

∀n, d [n ∈ S, d|n =⇒ d ∈ S].

Let R be a ring, and WS(R) be RS as a set. Define a map (ghost
map)

w : WS(R)→ RS

to be the map which satisfies for each n ∈ S, (xi) ∈WS(R)

wn((xi)) :=
∑
d|n

dx
n/d
d .
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Construction of Witt Rings

Lemma
There exists an unique, functorial ring structure on WS such that
the ghost maps are ring morphisms.

The proof is that, choosing a Frobenius lifting ϕp : R→ R for
each p, for any x ∈ RS we see that

▶ x ∈ im(w) and

▶ ∀n ∈ S [1 ≤ vp(n) =⇒ xn = ϕp(xn/p) mod pvp(n)R]

are equivalent (Dwork’s Lemma). That is, im(w) can be
characterized by a fixed Frobenius lifting.
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Construction of Witt Rings

First, applying Dwork’s Lemma to Z[Xn, Yn | n ∈ S] and the
Frobenius map ϕp defined by “raising indeterminates to the p-th
power”, for (Xn), (Yn) ∈WS(Z[Xn, Yn | n ∈ S]), it is immediate
that

w((Xn)) + w((Yn)), w((Xn))w((Yn)), −w((Xn)) ∈ im(w)

hold. As Z[Xn, Yn | n ∈ S] is torsion free, there exists uniquely
σ, π, ι ∈WS(Z[Xn, Yn | n ∈ S]) such that

▶ w(σ) = w((Xn)) + w((Yn)).

▶ w(π) = w((Xn))w((Yn)).

▶ w(ι) = −w((Xn)).

hold.
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Construction of Witt Rings
Next, for a general torsion free ring R, for
x = (xn), y = (yn) ∈WS(R) there exists uniquely
f : Z[Xn, Yn | n ∈ S]→ R such that

▶ f((Xn)) = x.
▶ f((Yn)) = y.

hold. Then, for WS(f) : WS(Z[Xn, Yn | n ∈ S])→WS(R),
defime as follows:

▶ x+ y := WS(f)(σ).
▶ xy := WS(f)(π).
▶ −x := WS(f)(ι).

This defines a ring structure on WS(R). For a general ring, choose
a “torsion free covering” R′ ↠ R and by

WS(R
′) ↠ WS(R)

one obtains a ring structure on WS(R) by transporting the ring
structure on WS(R

′).
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An Example

For example, in the case S2 := {1, p}, for
(a1, ap), (b1, bp) ∈WS(R), it is immediate to see that

▶ (a1, ap)× (b1, bp) = (a1b2, a
p
1bp + apb

p
1 + papbp).

▶ (a1, ap) + (b1, bp) = (a1 + b2,
(ap1+bp1)−(a1+b1)p

p + (ap + bp)).

Hence, one sees that Z/p2Z ≃WS2(Fp).

What we want to do: let Sn := {1, p, · · · , pn−1}, then we have

WSn(Fp) ≃ Z/pnZ

and hence letting S = {1, p, p2, · · · }, we have

W (Fp) := WS(Fp) ≃ limWSn(Fp) ≃ limZ/pnZ ≃ Zp.
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Strict p-rings

Recall that there exists an unique multiplicative section
Fp

τ→ Zp ↠ Fp (Teichmüller representative). Review of the
construction: for x ∈ Fp ≃ Zp/p and n ≥ 1, as Fp is perfect, there
exists

xp
−n

Once one takes lifts yn ∈ Zp, it is immediate that these form a
Cauchy sequence, and

lim yn ∈ Zp

exists and is independent of the choice of lifts. Let τ(x) := lim yn.

Now,
W (Fp)

∼−→ Zp, (xn) 7→
∑

τ(xn)p
n.
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Strict p-rings

This construction may be generalized to general perfect rings. For
a perfect ring R, W (R) can be intrinsically characterized as a
strict p-ring (R 7→ R/p, R′ 7→W (R′)):

Definition
A ring R is a strict p-ring if the followings hold:

1. R is p-adically separated and complete.

2. R/p is perfect.

3. R
×p→ R is injective.

N.B., these conditions are purely ring-theoretic.
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δ-rings

Definition
A pair (R, δ) is a δ-ring if R is a ring and δ : R→ R is a map
such that

1. δ(0) = δ(1) = 0.

2. δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y).

3. δ(x+ y) = δ(x) + δ(y) + (xp+yp)−(x+y)p

p .

hold.

For a δ-ring (R, δ) one may construct a Frobenius lifting

ϕ : R→ R, f 7→ fp + pδ(f).

Lemma
If R is p-torsion free, this construction gives rise to a bijection
between the two sets below;

1. The set of δ-structure on R.

2. The set of Frobenius liftings on R.
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Perfect δ-rings

We shall say that a δ-ring (R, δ) is perfect if the Frobenius lifting
ϕ determined by δ is an isomorphism. Then,

Lemma
There exists a category equivalence induced by R 7→W (R):

1. The category of perfect rings R which are of characteristic p.

2. The category of classically p-adically complete perfect δ-rings
(R, δ).

Proof.
Let us show (1) =⇒ (2). We want to lift the Frobenius on R to
W (R), but as limW (R)/pn ≃W (R), it is sufficient to lift it to
W (R)/pn. By the way, the Frobenius on R induces an
automorphism on LR/Fp

, and by the fact that d(xp) = 0 it is
immediate that it is a zero map, so we get LR/Fp

= 0. By
deformation theory, we win.
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Distinguished Elements

Definition
Let (R, δ) be a δ-ring. Then, we shall say that d ∈ R is
distinguished if δ(d) ∈ R×.

Lemma
Let R be a perfect Fp-algebra and d ∈W (R) be a distinguished
element. Then, d is a non-zero divisor.

Let R be a ring, R♭ := limR/p be its tilt. The canonical
morphism R♭ → R/p has, by the same argument before, a lift

Ainf(R) := W (R♭) R

R♭ R/p.

We shall call this lift the Fontaine’s map θR.
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Perfect Prisms

Definition ([BS19])

We shall say that ((R, δ), I) is a prism if the followings hold:

1. (R, δ) is a δ-ring,

2. I ⊆ R is an ideal, V (I) ⊆ Spec(R) defines a Cartier divisor,

3. A is (p, I)-derived compelete, and

4. p ∈ (I, ϕ(I)).

A perfect prism is a prism such that (R, δ) is perfect.

Now first, let us give a model-explicit definition of perfectoid rings.

Definition
R is a perfectoid ring if there exists a perfect prism ((S, δ), I) such
that R = S/I.
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Perfectoid Rings

Perfect rings can be defined model-implicitly.

Theorem
Let R be a ring. Then, being R is a perfectoid is equivalent to
that the following four holds:

1. R is classically p-adically complete.

2. The Frobenius morphism R/p→ R/p is surjective.

3. The kernel of Fontaine’s map θR : Ainf(R)→ R is principal.

4. There exists some ϖ ∈ R and u ∈ R× such that ϖp = pu.

We shall show that (Ainf(R), ker(θR)) is the desired perfect prism.
First, take a generator d of ker(θR), and one can show that d is
distinguished. By the previous lemma, we see that Ainf(R) is a
classically p-adically complete δ-ring. That ker(θR) defines a
Cartier divisor is clear by the fact that d is a non zero-divisor.
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Perfectoid Rings

To see that it is derived (p, ker(θR))-complete, it suffices to see
that it is classically (p, ker(θR))-complete, and it is achieved by
seeing that Ainf(R)/p is d-complete. This follows from the fact
that for ∀y ∈ ker(R♭ → R/p), R♭ is y-complete.

p ∈ (ker(θR), ϕ(ker(θR)))is clear. Finally, we shall see that

θR : Ainf(R)/ ker(θR)
∼−→ R,

but this is clear once one recalls that θR is a lift of R♭ → R/p
hence is surjective.

Definition
A topological field K is a perfectoid field if K is a perfectoid ring
and its topology is induced from a rank 1 valuation K → R≥0.
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Fargues-Fontaine curves

Theorem ([KJ])

Let F be an algebraically closed perfectoid field of characteristic p,
K1,K2 be MLF, α : GK1

∼−→ GK2 a strictly scheme theoretic (i.e.,
non-group theoretic) group isomorphism. Then, Fargues-Fontaine
curves XF,K1 , XF,K2 are not mutually isomorphic.

The key point of the proof is that:

▶ There exists a crystalline representation on G1 such that
after composing with the group theoretic isomorphism
α : GK1

∼−→ GK2 , it, a representation on G2, is not
Hodge-Tate.

▶ Any scheme theoretic isomorphisms XF,K1

∼−→ XF,K2

preserves crystalline representations.
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Fargues-Fontaine curves

Let Kunr be the maximal unramified subextension. Recall that V is
crystalline if and only if dimQp(V ) = dimKunr(Dcris(V )) holds and

that Kunr is group theoretic, i.e., GK1

∼−→ GK2 reconstructs
Kunr

1
∼−→ Kunr

2 .

Now, assume that there exists a scheme theoretic isomorphism
ϕ : XF,K2

∼−→ XF,K1 by considering the pull-back, we have

H0(XF,K1 , V ⊗OXF,K1
) ≃ H0(XF,K2 , ϕ

∗(V ⊗OXF,K1
)).

As Dcris(V )⊗Kunr K ≃ H0(XF,K , V ⊗OXF,K
) holds, we also have

dimK1(Dcris(V )⊗Kunr
1

K1) = dimK2(Dcris(V )⊗Kunr
2

K2).
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Fargues-Fontaine curves

Hence, we have

dimKunr
1
(Dcris(V )) · [K1 : K

unr
1 ] = dimKunr

2
(Dcris(V )) · [K2 : K

unr
2 ]

but as [K : Kunr] is group-theoretic,

dimKunr
1
(Dcris(V )) = dimKunr

2
(Dcris(V ))

holds. Finally we have

dimKunr
1
(Dcris(V )) = dimQp(V ) = dimKunr

2
(Dcris(V ))

and this leads to contradiction.
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Radial Environments

Definition ([IUTeichII])

1. A triple (R,C,Φ) is a radial environment if R,C are
connected groupoids and Φ : R→ C is an essentially
surjective functor.

2. A radial environment in which Φ is full is called multiradial,
otherwise uniradial.

Multiradial environment is “stable under switching”:

Lemma
The functor defined by “switching”

R×C R→ R×C R

preserves isomorphism classes of objects.
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Tautological Resolution of Indeterminacies

The most basic example: let R be the category of one-dimensional
complex vector spaces, i.e., C modules M such that there exists a
C-isomorphism M ≃ C, C be the category of two-dimensional
R-modules, and Φ : R→ C be the “forgetful functor”. In this
case, (R,C,Φ) is uniradial as

C× ≃ GL1(C)
non-isom
↪→ GL2(R).

However, once we replace the objects of R by pairs of M and a
GL2(R)-orbit of some C-isomorphism M ≃ C, (R,C,Φ) is
multiradial.
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Tautological Resolution of Indeterminacies

Another example comes from of MLF-type groups.

Recall that from the étale fundamental group Π of a of strictly
Belyi type hyperbolic curve X over an MLF K we can reconstruct
the quotient G and G ↷ K. Let us review the reconstruction
algorithm of the quotient G:
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Tautological Resolution of Indeterminacies

1. To reconstruct the quotient G, it suffices to reconstruct the
subobject ∆, i.e., the geometric fundamental group of X.

2. First, as we reconstructed p from G, we can reconstruct p
from Π as follows; let p be the unique prime such that for
infinitely many ℓ

dimQp(Π
ab ⊗Ẑ Qp)− dimQℓ

(Πab ⊗Ẑ Qℓ) ̸= 0

holds.

3. Reconstruct ∆ ⊆ Π as the intersection of all open subgroups
Π′ ⊆ Π such that for all ℓ ̸= p

dimQp(Π
′ab ⊗Ẑ Qp)− dimQℓ

(Π′ab ⊗Ẑ Qℓ)

= [Π : Π′](dimQp(Π
ab ⊗Ẑ Qp)− dimQℓ

(Πab ⊗Ẑ Qℓ))

holds.
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Tautological Resolution of Indeterminacies

This reconstruction algorithm gives rise to a functor

R→ C, Π 7→ G

after defining categories as follows:

▶ Let R be the category whose objects are topological groups
which are isomorphic to Π.

▶ Let C be the category whose objects are topological groups
which are isomorphic to G.

This functor is, by the existence of strictly scheme theoretic
isomorphisms K

∼−→ K, an uniradial environment.

Also in this example, after substituting objects of R by pairs of Π
and the Aut(GK)-orbit of the reconstructed reference isomorphism
G(Π) ≃ GK , we get a multiradialized environment.
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Rigidity Implies Multiradiality

This example suggests a way to give a general radial environment
its tautological multiradialization.

Definition
Define the tautological multiradialization (Rmtz,C,Φmtz) of
(R,C,Φ) as follows:

1. Define Rmtz to be R whose objects are substituted by

(R,C, α : Φ(R)
full poly

∼−→ C).

2. Φmtz((R,C, α)) := C.

It is immediate that tautological multiradializations are multiradial.
When the full poly-isomorphisms above α are mono-isomorphisms,
(R,C,Φ) turns to be multiradial. This is the same as C is being
rigid.
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Rigidity Implies Uniqueness of Reference

As we saw at the beginning of this talk, “indeterminacy due to
different choices of reference isomorphisms” appears frequently in
mathematics, and its resolution also appears frequently. Fix an
object C and define an object to be of C type if it is in some sense
isomorphic to C, then;

Lemma
C is rigid if and only if for any of C-type object D its reference
isomorphism is unique.
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Rigidity of AbGrp
Rigidity revisited: a category C is called rigid if Aut(C) is trivial,
i.e., every auto-category equivalence C

∼−→ C is isomorphic to id.

Usual “algebraic” categories are rigid. For example, the category
of abelian groups AbGrp is rigid by the argument of Freyd which
asserts category theoretic characterizations of underlying sets and
additive operations on them([Fre]):

1. Z has the following categorical characterization:

1.1 For every G ∈ AbGrp which is not initial,
|HomAbGrp(Z, G)| > 1.

1.2 For every f ∈ EndAbGrp(Z) such that f ◦ f = f , either
f = id or f = 0.

2. HomAbGrp(Z, G) ≃ G as sets.

3. For g, h ∈ HomAbGrp(Z, G) ≃ G, g + h is obtained by
considering the universal property of coproduct Z× Z.

As any category equivalence preserves these category theoretic
properties, it must be isomorphic to identity functor.
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Rigidity of Sets

By the Grothendieck conjecture for connected anabelioids, i.e.,

Isom(G1, G2)
∼−→ Isom(FSetsG1 ,FSetsG2)

one can deduce the fact that FSets is rigid. Similar arguments
yields the fact that Sets is also rigid.
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Categorical Reconstruction of Schemes

Let X be a locally noetherian scheme and Sch(X) be the category
whose objects are Y → X which is of finite type and morphisms
are Y1 → Y2 which is of finite type over X. Then,

Theorem ([LocN])

From Sch(X) we can reconstruct X purely category theoretically.

To reconstruct the scheme X, we have to reconstruct

1. its underlying topological space: this can be reconstructed, as
|X| is sober, by the famous reconstruction algorithm, from
Shv(X). To reconstruct Shv(X), it suffices to reconstruct
open immersions on X and coverings on X.

2. its structure ring sheaf: it suffices, as OX(U) ≃ Hom(U,A1
X),

to reconstruct A1
Y and this can be done by reconstructing P1

Y .
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Categorical Reconstruction of Smoothness

Let us reconstruct open immersions. Being Y1 → Y2 is an open
immersion is equivalent to it being a smooth monomorphism.
Hence it suffices to reconstruct smoothness. But this follows from
the famous characterization, which one can find in EGA, below:

Lemma
Being Y1 → Y2 smooth is equivalent to that for any monomorphism

Z0 ↪→ Z

from an one-pointed scheme and Z0 → Y1, Z → Y2 such that

Z0 Y1

Z Y2

commutes, there exists a compatible Z → Y1.
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Categorical Reconstruction of Open Coverings

It is immediate to reconstruct one-pointed schemes:

Lemma

1. Being Y → X a reduced one pointed scheme and, as an
object in Sch(X), being Y → X is minimal is equivalent.

2. Being Y → X an one-pointed scheme and that there exists,
up-to isomorphism, an unique morphism Z → Y from a
reduced one pointed scheme.

From this, one can reconstruct open coverings:

Lemma
A family of objects {Ui → X} is an open covering if and only if
Ui → X are open immersions and any reduced one-pointed
monomorphism Z → X factors through some Ui.
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Categorical Reconstruction of Topological Spaces

Review: let us review how to reconstruct a sober space X from
Shv(X) ([Top]). Let C be a category which is equivalent to
Shv(X). Then,

1. Define OT (C) to be the set of subobjects of the terminal
object of C modulo isomorphism.

2. X(C) := Homframe(OT (C), ∗).
3. For A ∈ OT (C), UA := {ϕ ∈ X(C) : ϕ(A) = ∗}.
4. O(C) := {UA : A ∈ OT (C)}.

Then, by choosing a reference isomorphism, we have
(X,O) ≃ (X(C),O(C)). Thus we reconstructed (X,O) from C
in a purely categorical fashion.
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Rigidity of Rng

Stronger theorem, for general schemes X,Y , one can show that

Isom(X,Y )
∼−→ Isom(SchY ,SchX).

From this stronger theorem, one immediately deduces that

Isom(R1, R2)
∼−→ Isom(AlgR1

,AlgR2
).

In particular letting R1 = R2 = Z,

Theorem ([AutCS])

Rng is rigid.
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Galois Categories
A category C is Galois if there exists a profinite group G and
category equivalence C ≃ FSetsG. This definition is
model-explicit. However, we have a model-implicit
characterization of Galois categories: let C be a category, then C
is Galois if and only if the followings hold:

1. C is finite complete and finite co-complete.

2. C does not have the zero object.

3. Every morphism of C has a strong-epi/mono factorization.

4. There exists a functor C→ FSets which is conservative and
exact.

The functor that appears in the last fourth axiom is called a fiber
functor (N.B., fiber functors are mutually isomorphic). For a
Galois category C and a fiber functor F , define

π1(C,F) := Aut(F)

and we call it the fundamental group of C.
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Strong-epi/Mono Factorization

A strong epi/mono factorization of a morphism u : X → Y is a
quintuple

(u1, u2, v, Z1, Z2)

where u1 : X → Z1 is a strong epimorphism, u2 : Z1 → Y is a
monomorphism, v : Z1

⨿
Z2

∼−→ Y is an isomorphism such that
u = u2 ◦ u1 and

X Z1 Y

Z1
⨿

Z2

u1 u2

v ∼

commutes. This is a categorical analogy of “factorization into an
injection after a surjection”.
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Strong Epimorphisms

Let us review the notion of strong epimorphisms.

Definition
For a morphism f : X → Y and an object A, let

HomC(X,A)†Y := {u ∈ HomC(X,A) : u ◦ p1 = u ◦ p2}.

Here, pi are the canonical projection X ×Y X → X associated to
the fiber product.

Definition
We shall say that a morphism f : X → Y is a strong
epimorphism if it is epimorphic and for any object A, the natural
map

HomC(X,A)→ HomC(X,A)†Y

is a bijection.
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Stability of Strong Epimorphisms

Remark
In general categories, strong epimorphisms are NOT stable under
compositions([KS]).

When one speaks of Galois categories, strong epimorphisms are
always stable under compositions.

Proof.
It is immediate that f being a strong epimorphism and F(f) being
surjective are equivalent by the existence of strong epi-mono
factorizations. Then, as surjections are stable under composition.
it is clear.
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Fundamental Groups
Fundamental groups are profinite:

Proof.
There exists a natural inclusion Aut(F) ↪→

∏
AutC(X) which

realizes Aut(F) as a closed subgroup of
∏

AutC(X). It is
sufficient to see that it is totally disconnected, quasi-compact
and Hausdorff. As each AutC(X) has the discrete topology,∏

AutC(X) satisfies properties above, so considering various
elementary stability properties and that the fact
Aut(F) ↪→

∏
AutC(X) is closed, we win.

For a general locally Noetherian connected scheme X, finite étale
coverings over X form a category

Fét(X)

and it is Galois with a fiber functor

Fs : Fét(X)→ FSets, (Y → X) 7→
∣∣HomFét(X)(Spec(Ω), Y )

∣∣
defined by a fixed geometric point s : Spec(Ω)→ X.
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Fundamental Groups

In particular, if one considers when X = Spec(k) by restricting
Yoneda Lemma to isomorphisms, it is immediate that

Aut(Fs) ≃ Aut(Spec(Ω)) ≃ Autk(Ω) ≃ Gk

holds. That is, the notion of étale fundamental groups is a
generalization of the notion of absolute groups.
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Morphisms between Galois Categories

Let us first define an appropriate notion of morphisms between
Galois categories.

Definition
A morphism between Galois categories ϕ : C1 → C2 is definend to
be an exact functor ϕ∗ : C2 → C1.

By this definition, a fiber functor can be seen as a basepoint
FSets→ C (the fact that it is conservative follows from strong
epi/mono factorization).
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Morphisms between Galois Categories

In the category of Galois categories, FSets is just like the
“singleton”, i.e., the terminal object. Let me explain this.

Definition ([Anab])

A category C is an anabelioid if there exists a finite family {Ci}I
of Galois categories and a category equivalence C ≃

∏
I Ci. An

anabelioid C is connected if in particular one can take a model
which satisfies I = ∗. Morphisms between anabelioids are defined
to be exact functors in the opposite direction.

That is, connected anabelioids are the same as Galois categories.
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Canonical Decomposition of Anabelioids

At first glance, this definition may be seen ill-defined, but this is
not the case.

Lemma
For an anabelioid C, its connected components can be
reconstructed in a purely category theoretic manner.

Proof.
For an anabelioid C, let T be its terminal object,

⨿
I Ti ≃ T be its

maximal decomposition, then we have a natural morphism

C
∼−→

∏
I

CTi

and it is immediate that is gives a category equivalence, so we
win.
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Locality of Basepoints

By applying the same argument, one can show a sort of “purity”
of morphisms of anabelioids.

Lemma
Let ϕ : C1 → C2 be an anabelioid morphism. Then, ϕ can be
canonically written as a morphism obtained by glueing morphisms
of their connected anabelioid components.

In particular,

Corollary

For an anabelioid C, its basepoint FSets→ C is local, i.e., it
factors through some connected anabelioid component
FSets→ D→ C.
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Connected Objects
There are two important classes of objects.

Definition
Let C be a Galois category.

1. We shall say that X ∈ ob(C) is connected if there exists
objects X1, X2 and an isomorphism X ≃ X1

⨿
X2 then either

X1 or X2 is initial.

2. A decomposition of X is a pair ({Xi}I ,
⨿

I Xi ≃ X) such
that Xi are connected.

3. We shall say that Y is a connected component of X if there
exists a decomposition ({Xi}I ,

⨿
I Xi ≃ X) such that for

some i ∈ I, Y = Xi holds.

For example, in FSetsG, connected objects are the same as finite
sets X whose equipped group action G ↷ X is transitive. Such
objects are, under indeterminacy of a choice of a basepoint,
isomorphic to G/H for some open subgroup H ⊆ G.
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Galois Objects

Next, let us define Galois objects.

Definition
Let C be a Galois category. Then a non-initial connected object
X ∈ ob(C) is Galois if the categorical quotient X/AutC(X) is
terminal.

For example, in FSetsG, Galois objects are the same as G/H for
some open normal subgroup H ⊆ G canonical up to a choice of a
basepoint.
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Associated Categories
For a given pointed Galois category (C,F) one can construct an
associated category of pointed objects.

Definition
For a given pointed Galois category (C,F), let Cpt

F be the
category whose objects are pairs (X,x) such that x ∈ F(X) and
whose morphisms are morphism in C which are compatible with
the choice of points.

For a given Galois category C and its Galois object X, one can
construct another associated category that is “the subcategory
whose objects are under control of X”.

Definition
For a given Galois category C and its Galois object X0, let C

X be
the full subcategory of C whose objects are Y ∈ ob(C) such that
for any Z which is a connected component of Y ,
HomC(X,Z) ̸= ∅ holds.
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Main Theorem
Sketch of the proof of the main theorem: we shall show for a
pointed Galois category (C,F),

F : C
∼−→ FSetsπ1(C,F)

holds. First, we show that its basepoint factors as follows:

C FSetsπ1(C,F)

FSets

and this follows from the facts below: for a fixed X ∈ ob(C),
▶ There exists a non-initial connected object Y over X and the

Galois closure Ŷ → Y → X of Y .
▶ Each object in the essential image of F|G : CG → FSets has

a natural AutC(G)op-action, and CG ∼−→ FSetsAutC(G)op .
▶ π1(C,F) ≃ limG∈GalC AutC(G)op.

Here GalC stands for the isomorphism class of Galois objects in C.
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Main Theorem
The strategy to show essential surjectivity:

▶ For E ∈ ob(FSetsπ1(C,F)) its equipped group action
π1(C,F) ↷ E factors as π1(C,F)/H ↷ E for some open
normal subgroup H.

▶ For a sufficiently large Galois object X corresponding to
π1(C,F)/H, one sees that

CX ∼−→ FSetsπ1(C,F)/H

and we win. For fully faithfulness, once one fixes X,Y , they
turn to be under some Galois object G, and for such a G, it
follows that CG ∼−→ FSetsAutC(G)op and,

HomC(X,Y ) = HomCG(X,Y )

≃ HomAutC(G)op(F(X),F(Y )) = HomFSetsπ1(C,F)
(F(X),F(Y ))

hold, hence we win.
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Main Theorem

Thus, the key points are:

1. that for a not necessarily connected, non-initial object X,
there exists a non-initial connected covering Y → X.

2. that for a non-initial connected object X, there exists its
“Galois closure” X̂ → X.

3. that there exists a profinite group isomorphism

π1(C,F) ≃ lim
G∈GalC

AutC(G)op.

4. that for a fixed Galois object G, each objects in the essential
image of the functor CG → FSets has a natural
AutC(G)op-action and the fixed basepoint gives rise to a
category equivalence

CG ∼−→ FSetsAutC(G)op .
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Connected Closure
The existence of connected closures follows from arguments in Cpt

F .

For a non-initial X, as F(X) is non-initial, there exists some
element x ∈ F(X). Then, by taking a decomposition
({Xi}I , X ≃

⨿
I Xi) of X, for some i, x ∈ F(Xi) holds. For this

i, Xi → X gives us the desired connected closure.

The existence of decompositions, follows from the existence of
strong epi/mono factorizations and induction.

Remark
As, in Galois categories, every object has an unique connected
component decomposition, recalling that in FSetsG connected
objects are the same as G/H for some open subgroup H ⊆ G, it
follows immediately that in Galois categories, every object has a
form

G/H1

⨿
G/H2

⨿
· · ·

⨿
G/Hn.

That is, Galois categories are combinatorial.

82 / 114



Galois Closure
For a connected object X, by the arguments in Cpt

F , one
immediately sees that the existence of (X0, ζ0) such that

evζ0 : Hom(X0, X)
∼−→ F(X)

holds. Indeed, writing F(X) = {ζ1, · · · , ζn}, as
(X, ζ1), · · · , (X, ζn) ∈ ob(Cpt

F ) and

F(Xn) ≃ F(X)n

hold, one may take ζ ∈ F(Xn) that corresponds to (ζi). If it is
necessary take a lift of this element to the connected closure.

Writing Hom(X0, X) = {u1, · · · , un}, by the universality of
products, there exists an unique

π : X0 → Xn

such that pi ◦ π = ui holds. By taking a factorization of π one
obtains

X0 → X̂ → Xn

and finally this is the desired Galois closure. 83 / 114



Galois System

On the isomorphism class GalC define an order as

X ≤ Y ⇐⇒ ∃Y → X.

Then, by the existence of Galois closures, one finds that (GalC,≤)
turns to be a directed partially ordered set. Now, for a fixed
ζ ∈

∏
X∈GalC

F(X), one obtains a unique projective system

Gal
ζ

C := (ϕ
ζ

X,Y : Y → X)

such that ϕ
ζ

X,Y preserves the fixed basepoints.
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Galois System
This projective system lifts to Aut, i.e., for ωY ∈ Aut(Y ) there
exists an unique ωX ∈ Aut(X) such that

Y X

Y X

ωY ωX

commutes. This fact is achieved by seeing that

Aut(X)
∼−→ Hom(Y,X)

with some set theoretic arguments. Therefore, one obtains a group
morphism

r
ζ

X,Y : Aut(Y )→ Aut(X)

and it is immediate to see that this forms a projective system

R
ζ

C : (r
ζ

X,Y : Aut(Y )→ Aut(X)).
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Galois System

Finally, it is immediate by some trivial computations to see that

uζ : π1(C,F) ∼−→ ( lim
X∈Rζ

C

Aut(X))op

θ 7→ ev−1
ζX

(θX(ζX)).

Here evζ,X is the bijection

evζ,X : Hom(X,X)
∼−→ F(X).
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Grothendieck Conjecture for Connected Anabelioids

Theorem
Let G1, G2 be profinite groups, βi : FSets→ FSetsGi be the
tautological basepoints. Then the natural map

Isom(G1, G2)
∼−→ Isom((FSetsG1 , β1), (FSetsG2 , β2))

is bijective.

This, in fact, follows from some elementary characterization of
profinite groups.

Lemma
G being a profinite group is. for the tautological basepoints
β : FSets→ FSetsG, equivalent to

α : G
∼−→ π1(FSetsG, β).
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Grothendieck Conjecture for Connected Anabelioids

As profinite groups are quasi-compact and Hausdorff, any bijection
is a homeomorphism. Thus, it suffices to see that it is bijective.

Injectivity is clear: for any open normal subgroup N ⊆ G,
ker(α) ⊆ N holds.

Surjectivity is less clear: it suffices to show for any
γ ∈ π1(FSetsG, β) and for any open normal subgroup N ⊆ G
that the existence of g ∈ G such that

γG/N = α(g)G/N .

But this follows by taking g such that γG/N (N) = gN holds.
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Grothendieck Conjecture for Connected Anabelioids

In situations where basepoints are not fixed, it is necessary to
consider outer morphims.

Definition

1. Define a category HomOut(G,H) whose objects are elements
of Hom(G,H), whose morphism ϕ1 → ϕ2 is h ∈ H such that
ϕ2 = hϕ1h

−1.

2. Define a category Mor(C1,C2) whose objects are anabelioid
morphisms C1 → C2 modulo isomorphism.

Theorem
The natural functor

HomOut(G,H)→Mor(FSetsG,FSetsH)

gives rise to a category equivalence.
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Slimness Implies Rigidity
For a morphism between connected anabelioids ϕ : C1 → C2,
define Iϕ ⊆ C1 to be the smallest subcategory of C1 which
contains all subquotients of objects in the essential image of ϕ∗.
This is a connected anabelioid and once a basepoint of C1 fixed,
for the induced basepoints

π1(C1) ↠ π1(Iϕ) ↪→ π1(C2)

holds.

By using the category equivalence in Grothendieck Conjecture, it is
immediate to see:

Corollary (Slimness Implies Rigidity)

Let ϕ : C1 → C2 be a morphism of connected anabelioids, then

Aut(ϕ) ≃ Zπ1(C1)(π1(Iϕ))

holds. Inparticular, morphisms over a slim anabelioid are rigid.
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Slimness Implies Rigidity

Let us define a class of anabelioid morphisms which correspond to
open immersions H ↪→ G.

Definition
A morphism C1 → C2 is said to be finite étale if there exists
some object X ∈ ob(C2) and an equivalence C1

∼−→ (C2)X such
that the composite with the morphism (C2)X → C2 induced by
taking product with X is equal to C1 → C2.
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Slimness Implies Rigidity

The choice of X and C1
∼−→ (C2)X is, in fact, intrinsic to finite

étale morphism itself.

Lemma
For a finite étale morphism ϕ : C1 → C2, one can reconstruct
X ∈ C2 and the equivalence C1

∼−→ (C2)X in a purely categorical
fashion.

Proof.
Take the left adjoint functor ϕ! : C1 → C2 to ϕ∗ : C2 → C1. Let
X := ϕ!(T ) and C1 → (C2)X be the anabelioid morphism
obtained by composing the forgetful functor (C2)X → C2 and ϕ∗.
Here, T is the terminal object in C1.
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Change of Grothendieck Universe

Let me explain an example of“change of Grothendieck universe”.

Definition
Let C be a slim anabelioid, Et(C) be the 2-category whose objects
are finite étale covering over C and morphisms are finite étale
morphisms compatible with covering structure morphisms (in the
sense of 1-commutativeness).

As C is slim, finite étale morphisms over it are rigid. Thus, if one
considers Et(C), the coarsification of Et(C), i.e., the category
whose class of morphisms is the isomorphism class of the original
class of morphisms, no information is lost with regards to
commutativity of diagrams, i.e., being 1-commutative in Et(C) is
equivalent to being commutative in Et(C).
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Change of Grothendieck Universe

If C is assumed to be U -small, Et(C) is not U -small. However,
between these categories, there exists an essentially surjective and
fully faithful functor. As C ∈ Et(C), the following theorem asserts
that

a ∈ a

in some sense.

Theorem
Let C be a slim anabelioid. Then, the following functor gives rise
to a category equivalence:

C→ Et(C), X 7→ (CX → C).
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Change of Grothendieck Universe
Essential surjectivity is clear by definitions. For fully faithfulness, it
is sufficient to see it for connected anabelioilds. First, calculating
the category equivalence we saw in Grothendieck Conjecture
section, we obtain

HomG(H1,H2) ≃

{ϕ : H1 → H2 : ∃g ∈ G,H1 ⊆ gH2g
−1, ϕ(−) = g(−)g−1}

and by considering “ϕ 7→ g 7→ g” we also obtain (n.b., here one
uses the fact ZG(H1) = 1)

· · · ∼−→ {g ∈ G/H2 : H1 ⊆ gH2g
−1}

but finally this is shown to be isomorphic to

· · · ∼−→ HomFSetsG(G/H1, G/H2).

The last isomorphism is achieved by considering mapping g to the
“multiplying by g-map”.
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Further Topics on Galois Categories
One can define fundamental groups for general anabelioids. First,
observe that:

Lemma
Let G be a group, GG be the corresponding groupoid, then

Hom(GG,FSets)
∼−→ FSetsG, F 7→ F(∗)

holds.

Now, for an anabelioid C, define its groupoid Π1(C) to be the
category whose class of objects is HomAnab(FSets,C), and the
set of morphisms β1 → β2 is IsomAnab(β1, β2). This turns to be a
generalization of the notion of fundamental groups for connected
anabelioids to general anabelioid, thet is, for a fixed basepoint β,

FSetsΠ1(C) := Hom(Π1(C),FSets) ≃ FSetsAut(β) ≃ FSetsπ1(C,β)

holds.
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Further Topics on Galois Categories

Details omitted, but we can consider the dual notion of stack,
costack, and the condition that a 2-functor is a costack is a
generalization of the property of Seifert-van Kampen-ness.

Theorem ([P16])

Let S be a Noetherian connected scheme. Then,

Fét(S)→ Grpd, X 7→ Π1(Fét(X))

is a costack.
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Further Topics on Galois Categories

Definition
A topological group G is said to be Noohi if for the forgetful
functor F : SetsG → Sets,

G→ Aut(F)

is an isomorphism.

By considering Raikov completeness, one clearly sees that profinite
groups are Noohi.

Theorem ([BS13])

A category C is said to be infinite Galois if there exists a Noohi
group G and a category equivalence C ≃ SetsG. Then, the issue
of whether C is infinite Galois or not is completely determined in a
purely category theoretic fashion.
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Further Topics on Galois Categories

Finally let me explain the relationship with classical Galois theory.
The Galois category over Spec(k)

Fét(Spec(k))
∼−→ FSetsGk

gives, if restricted to the full subcategory of connected objects,

FIMExtksep/k ≃ Fét(Spec(k))0
∼−→ FSets0Gk

≃ (SubGropenGk
)op.

This category equivalence is the Galois correspondence in
elementary field theory. That is, classical Galois theory is the
theory of Galois equivalence restricted to connected objects.
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Categorical Reconstruction of Categories

We also have a categorical reconstruction of categories([StrSpec]).
Let X be a connected category. We shall see that one can
reconstruct X up to op from ConX.

A constructive functor over a category X is a functor F : F→ X
such that

1. F is faithful.

2. For every A ∈ F and for every isomorphism with domain
F(A), u lifts uniquely to an isomorphism u′ with domain A.

Denote the category of constructive functors over X by ConX.

A category C such that there exists a connected category X and a
category equivalence ConX ≃ C is called of CF type.

100 / 114



Structure Species

Definition
Let C be a category. A pair Σ = (E,S) is called structure
species on C if

1. E : C→ Ord and S : C≃ → Sets are functors.

2. Functorially D ◦ S
subcategory
⊆ E ◦ J .

where D : Sets→ Ord and J : C≃ → C. A morphism between
structure species Σ = (E,S)→ Σ′ = (E′, S′) is defined to be a
morphism of functors ϕ : S → S′ such that

∀u ∈ HomC≃(a, b),∀U ∈ ob((D ◦ S)(a)), ∀V ∈ ob((D ◦ S)(b)),

[(E ◦ J )(u)(U) < V =⇒ (E′ ◦ J )(u)(D(ϕa)(U)) < D(ϕb)(V )].

Denote the category of structure species over C by SpC.

Theorem ([Ab])

ConC ≃ SpC.
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Reconstruction of Objects and Morphisms

Fix an of CF type category C. Then to reconstruct “X” up to
opposition it suffices to reconstruct “Xskelton” up to op.

Definition
For a category C and objects A,B ∈ ob(C) define the category

PathA,B
C

whose objects are pairs (F, ϕ) such that ϕ : A
⨿

B
non-isom
↪→ F .
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Reconstruction of Objects
First we shall reconstruct “ob(Xskelton)”, “EndXskelton(A)”,
“HomXskelton{A,B}”. For an of CF type category C,

1. Define ob†C to be the set of minimal objects of C modulo
isomorphism.

2. For A ∈ ob†C, let endC(A)† := AutC(A).

3. For A,B ∈ ob†C, A ̸= B, let homnon-isom
C {A,B}† be the set of

minimal objects (F, ϕ) of PathA,B
C such that there is no pair

(A→ C,B → D,C
⨿

D → F )

such that A
⨿

B → C
⨿

D → F is equal to ϕ.

4. For A,B ∈ ob†C, let

homC{A,B}† :=

{
endC(A)†

⨿
homnon-isom

C {A,B}† (A = B)

homnon-isom
C {A,B}† (A ̸= B)
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Reconstruction of Objects

Now we can reconstruct objects and morphisms:

Lemma
For a fixed reference equivalence α : C

∼−→ ConX, we may
construct canonical bijections

1. αob : ob†C
∼−→ ob(Xskelton).

2. αA,B
hom : homC{A,B}†

∼−→ HomXskelton{αob(A), αob(B)}.

Hence, all that remains is to reconstruct the composition law.
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Reconstruction of Composition Law

For simplicity, let

a := αob(A), b := αob(B)

u := αhom(f), v1 := αhom(g1), v2 := αhom(g2).

Then it is immediate to see that:

Lemma
For A ̸= B, g1, g2 ∈ homnon-isom

C {A,B}†, TFAE:
1. Either v2 = v1 ◦ u or v2 = u ◦ v1 holds.

2. Either g2 = g1 ◦ (id
⨿

f−1) or g2 = g1 ◦ (id
⨿

f) holds.

By this lemma, now we reconstructed the composition law of
non-isomorphisms with automorphisms.
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Reconstruction of Composition Law

Also of particular importance is:

Corollary

Fixing one v1 ∈ HomXskelton(a, b), for arbitrary

g2 ∈ homnon-isom
C {A,B}†

we know whether v2 ◦ v1 is definable or not. In particular, as X is
connected, choosing an orientation of a non-isomorphism of the
model X reconstructs whether“which direction is compatible with
the morphism chosen”, up to op, in a purely category theoretical
manner from C.
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Reconstruction of Objects
Finally for g1 = (F1, ϕ1) ∈ homnon-isom

C {A,B}†, g2 = (F2, ϕ2) ∈
homnon-isom

C {B,C}†, g3 = (F3, ϕ3) ∈ homnon-isom
C {C,A}†, let us

consider their composition laws.

Lemma
TFAE:

1. Either v3 = v2 ◦ v1 or v3 = v1 ◦ v2 holds.

2. There exists the colimit F of F1 ← B → F2 and a morphism
F3 → F such that,

A A
⨿

B F1

C
⨿

A F3 F

C B
⨿

C F2

commutes. 107 / 114



The End

Thank you for listening!
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